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Summary. Various properties of post-adiabatic representations of multichannel 
Schr~Sdinger equations are described in the general context of adiabatic and 
classical path approximations as used in atomic and molecular physics. The van 
der Waals interactions of fluorine, chlorine, and oxygen atoms with rare gases, 
hydrogen, methane, and hydrogen halides are considered: it is found that in some 
of these systems, the first-order post-adiabatic scheme exhibits a smaller coupling 
than the adiabatic representation, thus providing an appropriate choice of the basis 
functions for a decoupling approximation. 
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1. Introduction 

In a recent paper [1] the properties of the adiabatic representation of a multichan- 
nel Schr~Sdinger equation were analyzed by exploiting the Hamiltonian and sym- 
plectic nature of the coefficient and transformation matrices, respectively. Use of 
this algebraic structure of the problem was shown to be in line with an approach 
developed by Klar and Fano in their introduction of the post-adiabatic potentials 
(see Sect. 4). An infinite sequence of post-adiabatic representations was constructed 
and an algorithm for the choice of a symplectic transformation matrix for each 
representation was proposed. Those results, and in particular the recipes for 
obtaining the eigenvalues and eigenvectors of relevant manipulating matrices of 
half the size, were shown to offer interesting perspectives for the numerical integra- 
tion of the multichannel Schr6dinger equations, which arise when the solution of 
a quantum mechanical problem is tackled by the technique of separation of 
a variable. 

In this paper we present various aspects of the post-adiabatic approach to 
atomic and molecular processes in the more general context of adiabatic and 
classical path Hamiltonians. Similarly to the usual diabatic and adiabatic repres- 
entations, the post-adiabatic representations are based on the separation of all the 
degrees of freedom of the system in question into "fast" degrees of freedom and 
"slow" ones. The purely classical approach to atomic and molecular processes, 



226 V. Aquilanti et al. 

i.e., a description of all the degrees of freedom (including electronic ones) within the 
framework of classical mechanics, is physically unsound since the motion of the 
electrons is essentially quantum mechanical. On the other hand, a quantum 
mechanical calculation of the features of a given process which treats all the degrees 
of freedom as enjoying equal rights cannot be practically performed even for very 
simple systems (at least by up-to-date computer equipment) and is physically 
unjustified due to the presence of a "small parameter", the ratio of the electron 
mass to the averaged mass of the nuclei. A tool to take adequately into account 
the difference in the masses of the electrons and nuclei is the celebrated Born- 
Oppenheimer procedure [2-4] of the separation of "slow" nuclear motions from 
"fast" electronic ones. Its prototypical character is here exploited for illustration 
purposes. This procedure leads to the concept of adiabatic potential energy 
surfaces. The motion of the nuclei can sometimes be considered as classical (the 
so-called classical path approximation in atomic and molecular physics [5]). On 
the other hand, after the "fast" degrees of freedom have been separated from the 
"slow" ones, the latter may be still described within the framework of quantum 
mechanics. 

There are several options for such a description: (i) the (nonunique) diabatic 
representations [3, 6-8] connected with the quantum states of the reagents or 
products of the reaction or even of an intermediate coupling scheme; (ii) the 
adiabatic representation [3, 4, 8, 9], which takes into consideration the current 
configuration of the nuclei; and (iii) a hierarchy of post-adiabatic representations 
[1] (also taking into.account the current configuration of the nuclei). In the 
construction of the post-adiabatic representations, the nonadiabatic coupling 
between the electronic states of the system is treated as a perturbation of the 
potential energy surfaces. This leads to new (post-adiabatic) potentials and a new 
(post-adiabatic) coupling which is sometimes much smaller than the initial coupling. 
The diabafic and adiabatic representations typically involve infinitely many equa- 
tions, but only a finite number of them should be retained to proceed to the post- 
adiabatic representations. 

Besides the classical path approximation, which treats the nuclear motions 
classically, an approximation of another kind is also widely exploited, namely, that 
of neglecting the nonadiabatic coupling between the potential energy surfaces. As 
a matter of fact, this approximation means that the process in question is assumed 
to evolve on a single potential energy surface and is described by the Schr6dinger 
equation 

O~(R, t) 
ih ~-------~ = H . ( R ) T ( R ,  t), (l) 

where R are the coordinates of the nuclei, ~(R, t) is the scalar wave function, while 
the Hamiltonian H.(R)  has the form 

h 2 62 
H,(R)  = u(R) -- 

2M~ ~R~ " 

Here u = u(R) is the potential energy surface under consideration and M~ are 
certain coefficients depending on the masses of the nuclei. As is well known, in the 
problem of a collision of two particles with masses ml and mz we have M1 = M2 = 
M3 = mlm2/(ml  + m2). 

From the mathematical viewpoint, we have arrived at a problem of exactly 
the same form as the initial problem (before the separation of the electronic 
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degrees of freedom): 

ih t~(r, R, t) = H(r, R) ~(r, R, t) (2) 
& 

(here r are the coordinates of the electrons). However, one can already perform 
quantum mechanical calculations in problem (1) treating all the degrees of freedom 
as enjoying equal rights. In many cases, a purely classical description of the nuclear 
motion in the field u(R) is also justified (the method of classical trajectories 
[10, 11]). Finally, the nuclear degrees of freedom may also be partitioned into 
"fast" ones and "slow" ones depending on, e.g., the relative importance of the 
quantum effects. For example, in the problem of inelastic scattering of an atom by 
a diatomic molecule, it sometimes turns out to be useful to consider the transla- 
tional and rotational degrees of freedom as "slow" ones and the vibrational degree 
of freedom of the molecule as a "fast" one [12]. After the separation of the "slow" 
motions from the "fast" ones the latter can be considered quantum mechanically 
whereas the "slow" motions may be described within the framework of classical 
mechanics (the classical path, or semiclassical, approximation for the nuclear 
degrees of freedom [12-15]). It is not expedient to treat the "slow" motions 
quantum mechanically if one has separated all the degrees of freedom into "fast" 
ones and "slow" ones just according to the relative strength of the quantum effects. 
Nevertheless, a quantum mechanical description of the "slow" motions may be 
useful in other cases. 

It is here emphasized that the "slow" and "fast" degrees of freedom can be 
chosen as appropriate for a given problem and may bear no relation to electrons 
and nuclei (see, e.g., Ref. [9]); the most important example is the separation of the 
hyperradius in the hyperspherical approach to elementary processes (for our view 
see Ref. [16]). 

The semiclassical theories based on the WKB approximation [5, 17] will not be 
dealt with in the present paper. We address the reader to our Ref. [18] for recent 
advances and references. 

The structure of the paper is as follows. Section 2 recalls the derivation of the 
diabatic and adiabatic representations of multichannel Schr6dinger equations 
while Sect. 3 describes, in a very brief way, the classical path approximation. The 
formal construction of the post-adiabatic representations is introduced in Sect. 4 
and the basic properties of these representations are listed in Sect. 5. Section 6 
treats in detail the simplest case of the construction, namely, the first-order 
post-adiabatic potentials and couplings in the two-state problem. The analysis of 
Sect. 6 is then applied in Sect. 7 to specific examples, the van der Waals inter- 
action between O, F, C1 atoms and He, Ne, Ar, Kr, Xe, Dz, CH4, HC1, HBr, HI 
particles. Several unsolved problems are mentioned in Sect. 8 by way of 
the conclusion. Finally, the Appendix is devoted to some important technical 
details of the post-adiabatic scheme which were not paid adequate attention in 
Ref. [1]. 

2 Adiabatic and diabatic representations and the nonadiabatic 
coupling operator 

After the separation of the "slow" (or "external" [5]) coordinates R from the "fast" 
(or "internal") ones r, independently of the physical motivation for the partition 
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of all the degrees of freedom of the system into "fast" ones and "slow" ones, the 
Hamiltonian H(r, R) of the problem takes the form 

h 2 92 
H(r, R) = Ho(r; R) - ~ 2M~ OR E' (3) 

where the "adiabatic" Hamiltonian Ho = Ho(r; R) involves no differentiation with 
respect to R. The eigenvalues uk(R) of the Hamiltonian Ho, which depend on the 
"slow" coordinates R as on parameters, are called the adiabatic potentials (potential 
energy surfaces) of the problem in question. 

Let tpk(r; R) be the corresponding orthonormalized eigenfunctions: 

Ho~Ok = Ukq~k, (~0k[~0,) = ~k, (4) 

(here 5kt is the Kronecker symbol whereas the angle brackets denote integration 
over r). These functions also depend on the "slow" coordinates R as on parameters. 
One can express the functions ~ok in terms of an orthonormalized basis Ok(r) 
independent of R: 

~Ok(r; R) = ~. Lzk(R)O,(r), (OklO~) = 6kt, 
l 

where the matrix elements Lzk = Lzk(R) constitute a real orthogonal operator: 
LtL = I, i.e., 

2 LkmLlm = 6kl" 
in  

Here and henceforth, the upper index t means a transposed (infinite) matrix, while 
I denotes the identity operator. It is usually expedient to set Ok(r ) = q)k(r; R (°)) 

n(O) where ~ are the values of the "slow" coordinates at the beginning or at the end of 
the system evolution. In particular, in the Born-Oppenheimer case, Ok(r) can be 
taken as the quantum states of the reagents or products of the reaction. 

One can look for the wave function 50(r, R, t) of the system in the form 

50 = 50(r, R, t) = e - iE t /~  Ok(R)Ok(r), (5) 
k 

where E is the total energy of the system, or in the form 

5 ° = 50(r, R, t) = e-iEt/h 2 tI)k(R)tpk(r; R). (6) 
k 

The coefficients Ok and ~k relate as 

Ok(R) = ~ Lkl(R) ~l(R). 
l 

Substituting the expansions (5) and (6) into the SchrSdinger equation (2), taking 
into account the special form (3) of the Hamiltonian H(r, R), and recalling the 
definition (4) of the eigenfunctions ~0k, we arrive at the following equations for Ok or 
~k (the so-called multichannel Schr6dinger equations): 

h2 ~21~ 
--  ~ ~. 2M~ 8R---~ + V O  = E O ,  (7) 

h (a )5 
--~-~--~ I - ~ + P ~  ~ + U ~ = E ~ .  (8) 
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In these equations, U = U(R) is a diagonal operator (in the basis ~0k) with the 
diagonal elements Uk, the self-adjoint real potential energy operator V = V (R) is 
equal to 

V = LUL t, Vkl = ~, UmLkmLlm, 
m 

and the skew-symmetric real operators P~ = P,(R) of the nonadiabatic couplin9 are 
equal to 

L t~L P~,kt=(~Ok ~--~lqh ) .  (9) P~ = ~R~' 

Equation (7) is called the diabatic representation of the process under considera- 
tion, whereas Eq. (8) is called the adiabatic representation of this process. The 
diabatic representation, in contrast to the adiabatic one, shows no first derivatives 
with respect to the "slow" coordinates R but involves the nondiagonal operator 
V instead of the diagonal operator U. Moreover, the diabatic representation, again 
in contrast to the adiabatic one, is not unique [16], because the basis Ok(r) can be 
a priori chosen in different ways and the operator V(R) is defined only up to an 
R-independent orthogonal transformation of this basis. 

One should emphasize that both representations - i.e., the diabatic (7) and 
adiabatic ones (8) - are exact. On the other hand, as we have already pointed out in 
Sect. 1, they typically consist of infinitely many equations, and the perspectives of 
their use in practical computations are determined by the rate of convergence of the 
corresponding finite-dimensional truncations. 

Almost all the actual calculations for multichannel Schr/Sdinger equations refer 
to the diabatic representation (7), an important early example being Ref. [19]. 
There are also some works dealing with the adiabatic representation (8); see 
Ref. [20] for pioneer examples and Ref. [21] for a recent survey. The possibilities 
for numerical integration of multichannel Schr6dinger equations in the adiabatic 
representation are characterized by the behavior of the operators P~ of the 
nonadiabatic coupling (9). The smaller the P~ (i.e., the smaller an error with which 
the process under consideration can be represented as a collection of noninteract- 
ing single channel ones), the higher the calculation rate and accuracy for numerical 
solutions of Eq. (8). Moreover, the partition itself of all the coordinates in the 
configuration space into "fast" ones and "slow" ones is justified only when the 
matrix elements P~,k~ are small everywhere except for some localized regions. 
A quantitative measure of the coupling between two channels corresponding to the 
adiabatic potentials Uk(R) and ul(R) is the dimensionless function 

1 h 2 
luk(R) -- uz(R)l ~ ~ [P~'k~(R)Ie" (10) 

The point of the maximum for function (10) coincides approximately with the 
location of the minimum for the term splitting lUk(R)- ut(R)] (the so-called 
avoided crossing point [5]). In the classical path approach to a given process, the 

probability of the nonadiabatic transitions between the potential energy surfaces 
Uk(R) and ut(R) attains a maximum in a vicinity of this point. 

3 Classical path approach 

Let us consider the classical path formalism in more detail. In order to describe the 
evolution of the "slow" coordinates R within the framework of classical mechanics, 
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we introduce the concept of a trajectory R(t), the full Schr6dinger equation (2) 
having to be replaced by the equation 

ih 0To(r, t____~) = Ho(r; R(t))To(r, t) (11) 
0t 

(recall that Ho is the adiabatic Hamiltonian). Expanding the "fast" wave function 
To(r, t) in the adiabatic basis ok(r; R), 

To = To(r, t) = ~" Ak(t){pk(r; R(t)), 

and recalling the definition (4) of the eigenfunctions ¢p~, we obtain the following 
equation for the coefficients Ak: 

d t =  - U +  T P~ A, (12) 

where U = U[R( t ) ]  and P~ = P~[R(t)]. Here we have used the fact that 

I q)k ~ qh I = ~ dR ,  

according to Eq. (9). 
Analogously to the expansions (5) and (6), the functions Ak are often repres- 

.... ented in the form 

} Ak(t) = ak(t)exp ---~ Uk[R(z)] dz , 
o 

the coeffÉcients ak satisfying the equation 

da dR,  
= - T ~ - - ~  Q~a (13) d--T 

where 

Q~,kz(t) = P~,kz[R(t)]exp (Uk[R(z)] -- ul[R(z)]) dz . 
o 

The probability of the transition k ~ l  is equal to lal( + oo)12 where {am(t)},~ 
denotes the solution of Eq. (13) with the initial conditions am( - oo ) = 6ink. 

Using the Ehrenfest average [12] of the Hamiltonian Ho 

H~ver(R, t) = ( T o l H o l  To )  = Y'~ IAk(t)[2uk(R) = Y', [ak(t)[2uk(R), 
k k 

we arrive at the equations for the functions R~(t): 

d2R~ aH~) ver aUk (~Uk 
M,--d-W = = - - ~ l A k [  2 = - - ~ l a k l  2 ..... . (14) 

OR, k OR, 0R, 

One has to solve Eqs. (12), (14) [or (13), (14)] simultaneously determining the 
classical trajectories R~(t) and the quantum mechanical amplitudes ak(t). There 
also exist other approaches to the derivation of the equations for the functions 
R~(t) [5]. 



Post-adiabatic approach to atomic and molecular processes 231 

The smaller the P,, the higher the accuracy with which the system of Eqs. (13), 
(14) with the initial conditions am( - oe) = 6,,k for some k can be approximated by 
the system 

d2R~ auk 
am--6mk, M , - ' ~ - =  aR~ 

corresponding to the classical motion in the field Uk in the absence of the other 
potential energy surfaces. 

4 Hierarchy of the post-adiabatic representations 

The crucial condition for effectively calculating a given multichannel process as 
a perturbation of a collection of noninteracting single channel processes is the 
smallness of the matrix elements P,,kt given by Eq. (9). This condition is equally 
important for both the purely quantum mechanical approach to the process via the 
adiabatic representation (8) and the classical path approximation (12)-(13). In this 
context, the so-called post-adiabatic representations of an elementary chemical 
process introduced by Klar and Fano in 1976-1978 [22-24] are of considerable 
interest. These representations have the form similar to Eq. (8) but involve a new 
coupling which is sometimes much smaller than the initial nonadiabatic coupling. 
The Klar-Fano theory has been further developed and given a rigorous mathemat- 
ical background in Ref. [1]. 

The post-adiabatic analysis can be applied only to problems containing a single 
"slow" coordinate R. The main idea of Klar and Fano is to "include", via certain 
algebraic operations, the nonadiabatic coupling in the potential curves 
uk(R) = Utk°)(R) for each value of R. This would result in new (post-adiabatic) 
potentials Utkl)(R) and a new coupling/71 = III(R) which can be smaller than the 
initial coupling. One may then "include" this residual (post-adiabatic) coupling Ha 
in the post-adiabatic potentials Utkl)(R) (again using algebraic operations only) and 
obtain the post-adiabatic potentials U(k2)(R) of the second order and a coupling 
Ha =//z(R). From the formal viewpoint, this iterative procedure (to be called the 
Klar-Fano construction in the sequel) consists of infinitely many steps, but it seems 
that the first step only is of practical significance. The reason is that neither 
conditions guaranteeing the decrease of the coupling at each step, nor convergence 
criteria for the iterations, nor properties of the limiting equation in the convergence 
case are known. 

Up to now, the Klar-Fano construction has been developed only for systems 
with a finite number (N) of states ~0k. AS the mathematical apparatus, the theory of 
Hamiltonian and symplectic matrices is exploited. Recall that a 2N x 2N matrix 
K is said to be Hamiltonian if it satisfies the condition Ktj  + JK --- 0 where 

(0 i) 
J =  0 

and I denotes the identity N x N matrix. A matrix K is Hamiltonian if and only if it 
has the form 

K = _ At 
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where the N x N matrices B and C are symmetric: B t = B, C t = C while the N x N 
matrix A is arbitrary. Hamiltonian matrices determine Hamiltonian linear differen- 
tial equations. On the other hand, a 2N x 2N matrix S is said to be symplectic 
if it satisfies the condition StjS = J. Symplectic matrices determine canonical 
linear transformations. A list of the basic properties of Hamiltonian and 
symplectic linear operators and a detailed description of the iterative procedure 
are presented in Ref. [-1]. Here we will give just a brief summary of the 
algebraic operations at each iteration step. For  other applications of Hamiltonian 
equations and canonical transformations to multichannel processes see, e.g., 
Ref. [25]. 

The starting point of the Klar -Fano construction is the adiabatic representa- 
tion (8) where the number of the "slow" coordinates R~ is equal to 1 (so that the 
index e becomes unnecessary), U(R) is a diagonal N x N matrix, P(R) is a skew- 
symmetric N x N matrix, and ~(R) denotes an N-dimensional vector. One can 
rewrite the system of N second-order equations 

I-d~+P ~+u~=E~ 

as a system of 2N first-order equations 

[(0 0)1(: ) + ~ = 0 ,  ( 1 5 )  
2, dR + v-E  P z 

where 

The matrix 

= _ _ _  

 0(o o)  16, 
is Hamiltonian since P is skew-symmetric whereas the matrix U = Uo is diagonal 
with the diagonal elements u~ °) which are the adiabatic potentials of the system in 
question. 

In general, just before the (s + 1)th iteration step (s >1 0), we have a collection of 
2N first-order equations 

+ - - f l s  X=O, (17) 
x / / ~  dR + U~- E1 x / / ~  

where Us = U~(R) is a diagonal N x N matrix with the diagonal elements u~(R) 
(the post-adiabatic potentials of the system in question of order s corresponding to 
the total energy E), H~ = Ha(R) is a Hamiltonian 2N x 2N matrix (the post- 
adiabatic coupling of order s corresponding to the total energy E), and X(R) 
denotes a 2N-dimensional vector. The eigenvalues of the matrix 
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are equal to + [U~k s) -- E] ~/2. Denote the eigenvalues of the Hamiltonian matrix 

(0 
Ks = Ks(R) = U, - EI + ~ x / ~  IIs (18) 

by _+_ [u~ ÷ 1) _ E] 1/2 (recall that the spectrum of any Hamiltonian matrix consists 
of pairs + 2 [1]). The functions u~ ~+ 1)(R) are the post-adiabatic potentials of the 
given system of order s + 1 corresponding to the total energy E. 

Suppose that for R ranging in a certain interval the quantities u] "+ 1) . . . .  , u~+ 1) 
are distinct and other than E. Let Us + i = Us + 1 (R) be the diagonal matrix with the 
diagonal elements u~ s÷ 1). The Hamiltonian matrices K, and 

(Us+l O- E1 ~)  (19) 

possess the same simple spectrum and are therefore conjugated, at least over C, by 
a symplectic 2N x 2N matrix Ss = Ss(R) [1]: 

0 

Then the coordinate transformation 

X = SsY 

[Y(R) being a 2N-dimensional vector] casts Eq. (17) into the equation 

E( I0) h dY 0 ~ H s + x l  Y 0, (20) 
2 x / ~  dR + Us+l - E1 + x /2M _J = 

where 

dSs 
n s +  l = n s +  l ( g )  = s ;  -1 d---R (21) 

is a Hamiltonian 2N x 2N matrix representing the post-adiabatic coupling of order 
s + 1 corresponding to the total energy E. Equation (20) is of the same form as 
Eq. (17) but involves U~+l and Hs+l instead of Us and//s ,  respectively, and is the 
starting point for the (s + 2)th iteration step. 

In particular, the first-order post-adiabatic potentials u ]1) . . . .  , u ~) correspond- 
ing to the total energy E are equal, respectively, to 22 + E, . . . ,  25 + E where 
_+ 21 . . . .  , + 2N are the eigenvalues of the Hamiltonian matrix 

h 

(recall that U is the diagonal matrix whose diagonal elements are the usual 
adiabatic potentials ul, . . . ,  us, while P is the skew-symmetric matrix of the 
nonadiabatic coupling). Let U1 be the diagonal matrix whose diagonal elements are 
u] 1), . . . ,  u~ ) and So, a symplectic matrix satisfying the condition (0 :) 

KoSo = So U 1 -  E1 " 



234 V. Aquilanti et al. 

Then the matrix/I1 of the first-order post-adiabatic coupling corresponding to the 
total energy E is equal to 

dS0 
Ht = So* dR " 

The degeneracy (multiplicity) of the spectrum of matrix Ks [Eq. (18)] can be an 
obstacle for this construction. Among the degeneracy points, one should distin- 
guish the turning points u~+l)(R)= E and the coalescence points u~+l)(R)= 
u~ s+ t)(R). At all these points, the coupling/7~+ 1 and the subsequent post-adiabatic 
potentials u~ v) and couplings H~, v i> s + 2, are a priori not defined. However, as 
we will see in the Appendix, the turning points are in fact not dangerous for the 
post-adiabatic scheme. 

If the coupling Hs is small then the turning and coalescence points for the 
potentials u~ ~+ 1) are close, respectively, to the turning and coalescence points for 
the potentials u~ ~). 

What is of great importance for practical calculations is that finding the 
potentials utk s+t) = 2~ + E (+24 being the eigenvalues of the matrix Ks of order 
2N) and constructing a symplectic operator Ss conjugating two matrices (18) and 
(19) of order 2N can be reduced to manipulations of matrices of order N. The 
relevant methods are described in detail and given a rigorous proof in Ref. [1] and 
will not be reproduced here. 

5 Peculiarities of the post-adiabatic scheme 

As we will see in Sect. 7 by an example of the interaction of fluorine and chlorine 
atoms with rare gases, hydrogen, methane, and hydrogen halides, the post- 
adiabatic coupling /I1 often turns out to be much smaller than the usual 
nonadiabatic coupling P. On the other hand, it is also necessary to mention some 
limitations of the post-adiabatic approach (however, not all of them are essential 
for practical computations). 

The choice of the slow coordinate 

One can construct the post-adiabatic representations only for systems with a single 
"slow" coordinate. This circumstance may seem to be very restrictive, but for many 
applications, it is quite sufficient to consider such systems only. For instance, if 
the transitions between the terms of a given diatomic system are induced mainly by 
the radial relative motion of the atoms then one can neglect the rotation of the 
molecular axis while studying these transitions and take into account the inter- 
nuclear distance as the only "slow" coordinate [26] (the "fast" variables are the 
electronic coordinates). This is just the case for the interactions O, F, C1-He, 
Ne, Ar, Kr, Xe, D2, CH4, HC1, HBr, HI considered in Sect. 7. 

Another example comes from the hyperspherical coordinates technique [14, 15, 
25, 27-29]. A system of n >/3 atoms can be described by the hyperradius p (a 
coordinate whose dimension is length) and 3n - 4 angular variables [25, 27]. For 
example, for n = 3, the three coordinates (p, 0, qS) determine the internal configura- 
tion of a system of atoms A, B, C (i.e., the size and shape of the ABC triangle) 
whereas the three Euler angles (c~, ]~, 7) describe how the ABC triangle is oriented in 
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space [14, 15, 28]. Within the semiclassical approach on a single potential energy 
surface, the internal coordinates are sometimes quantized whereas the Euler 
angles are treated classically [15]. On the other hand, it is also possible not to 
quantize the hyperradius [14] and, moreover, consider it as the only "slow" (and 
quasiseparable) variable [16, 25, 27] which enables one to apply the post-adiabatic 
scheme. 

An opposite example is the semiclassical Vq RcTc description of inelastic scatter- 
ing of an atom by a diatomic molecule on a single potential energy surface, when 
the translational and rotational degrees of freedom are treated classically and the 
vibrational degree of freedom of the molecule is quantized [12]. Here we have five 
"slow" coordinates and one "fast" coordinate. 

Fano, H. Klar, and M. Klar [22-24] considered scattering of an electron by 
a hydrogen atom and used the mean-square radius of the two electrons introduced 
by Fock [30] as the "slow" coordinate. 

Nonuniqueness of the representation 

What is much more important is that the post-adiabatic representations are not 
determined uniquely. At each step of the Klar-Fano construction, one computes an 
R-dependent symplectic matrix Ss conjugating the Hamiltonian matrices (18) and 
(19), and all the symplectic matrices conjugating two given Hamiltonian 2N x 2N 
matrices with the same simple spectrum constitute an N-dimensional manifold. 
The post-adiabatic coupling//s+ I(R) of order s + I and the post-adiabatic poten- 
tials u ~ ÷ 2)(R) of order s + 2 depend therefore upon the choice of the matrix-valued 
function S~(R) at the (s + 1)th step of the iterative scheme. 

In particular, whereas the first-order post-adiabatic potentials u~ 1) are deter- 
mined uniquely by the system itself(as well as the usual adiabatic potentials uk and 
nonadiabatic coupling P), the first-order post-adiabatic coupling I/1 already de- 
pends upon the choice of So. 

The problem of the optimal choice of the function Ss(R) at each iteration step 
therefore arises when using the post-adiabatic representations of the process in 
question. One can call optimal the function S~(R) which minimizes the coupling 
F/s÷I(R). An unsuitable choice of S~ may result in a very large post-adiabatic 
coupling of order s + 1. In a general setup, the problem of the choice of the matrix 
S~ seems to be very hard (not to mention the fact that the magnitude of the coupling 
Hs+ 1 can also be defined in several different ways). In Ref. [1], we have proposed 
a rather simple and effective algorithm for the choice of the matrix S~ which 
guarantees a small coupling//~+ 1 (R) provided that the coupling//~(R) obtained at 
the preceding iteration step is already sufficiently small. This algorithm is described 
in the Appendix of the present paper. In the sequel, we will denote the function 
S~(R) constructed according to the algorithm of Ref. [1] by S*(R). The matrix 
S* tends to the identity matrix as the coupling//, vanishes. 

Classical path approach 

Another important property of the post-adiabatic approach is the absence of an 
adequate analogue for the classical path approximation (11). The reason is mainly 
a more complicated structure of the post-adiabatic couplings/7 s of orders s t> 1 
compared with the usual nonadiabatic coupling //o [Eq. (16)]. As a natural 
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attempt to the post-adiabatic generalization for the classical path approximation 
we may propose the following construction. Let ~-e be some continuous operator 
mapping an R-dependent Hamiltonian matrix K(R) of order 2N into an R- 
dependent symmetric matrix o~e [K] (R) of order N, the following two conditions 
being satisfied: 

(a) If -t-21, . . . ,  +2N are the eigenvalues of the matrix K then 212 + 
E, . . . ,  2~ + E are the eigenvalues of the matrix o~e[K]. 

,b, 

for any symmetric matrix V of order N (recall that I denotes the identity N x N 
matrix). 

These two conditions are consistent because the eigenvalues of the Hamiltonian 
matrix entering condition (b) are equal to + u~/2 where Uk are the eigenvalues of V. 

Then the post-adiabatic classical path approximation of order s + 1 >t 1 cor- 
responding to the total energy E can be defined as the equation 

i h - -  = Hs+l ~s+l, 
Ot 

where Hs+x = H~+x(r; R(t)) is a linear operator in the N-dimensional space (of 
scalar functions in r) whose matrix in a certain R-independent orthonormalized 
basis is equal to o~E[K~(R(t))], K,(R) being matrix (18). One may assume the 
function R(t) to satisfy the same Eq. (14) as in the case of the usual classical path 
approximation. 

The main difficulty in this program is again nonuniqueness, since the operator 
~'~ can be chosen in many ways. 

Energy dependence 

For s 1> 1 the post-adiabatic potentials Utk~)(R) and couplings I-I~(R) depend upon 
the total energy E of the system. However, as we will see in Sect. 7, for many 
systems, this dependence turns out to be rather weak in the physically interesting 
range of E. 

Complex potentials and couplings 

The post-adiabatic iterations can lead to complex potentials and couplings. 
First, the real Hamiltonian matrix Ks [Eq. (18)] may well possess not only 

real pairs +2  of eigenvalues (corresponding to "classically forbidden" states 
U(kS+ 1) = )2 + E > E) and purely imaginary pairs +ico (corresponding to "classi- 
cally accessible" states t~k"(s+l) = E - co 2 < E) but also quadruplets _+e +ifl of 
eigenvalues (e > 0, fl > 0). Each such quadruplet gives rise to two complex-con- 
jugated potentials- (s+ 1) = c(2 _ f12 nt - E -q- 2iefl. The physical meaning of complex ~k,k+ l 
post-adiabatic potentials in the Klar-Fano construction requires further investiga- 
tion: unitarity is lost when the potential is complex and couplings are neglected. In 
the weak coupling cases investigated so far the problem is negligible. Imaginary 
(optical) potentials are widely used in the theory of inelastic processes and chemical 
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reactions [31, 32], where they are introduced ad hoc to model the loss of probabil- 
ity conservation. Therefore it would be interesting to see whether imaginary terms 
which arise in this theory can be similarly interpreted as effective "optical" poten- 
tials, and so be useful to estimate the probability loss associated with interchannel 
coupling. 

Second, even if all the eigenvalues of the real matrix Ks [Eq. (18)] are either real 
or purely imaginary and the matrix (19) is therefore real, a symplectic operator Ss 
conjugating these two matrices cannot always be chosen to be real. This has been 
explained in more detail in Ref. [1]. If the matrix S~ is not real then the coupling 
Hs+l [Eq. (21)] and the matrix Ks+ 1 to be handled at the next iteration step will 
not, generally speaking, be real. 

Luckily, both these difficulties disappear when the coupling//~ is small. To 
be more precise, if the post-adiabatic potentials u] s) . . . .  , u~ ) of order s are real, 
distinct, and other than E and the post-adiabatic coupling//~ of order s is real and 
sufficiently small, then the post-adiabatic potentials u~ s+l) . . . . .  u~ +1) of order 
s + 1 are real and the matrix Ss can be also chosen to be real. In particular, the 
algorithm of Ref. [-1] gives the real matrix S*. In practice, "sufficiently small 
coupling" usually means "not very strong one". For all the systems 
O, F, CI-He, Ne, Ar, Kr, Xe, D2, CH4, HC1, HBr, HI considered in Sect. 7 (except 
for O-He) the post-adiabatic potentials u~ 1) for all the values of R turn out to be 
real for physically interesting energies E and the matrix So can be also chosen to be 
real. This leads to a real post-adiabatic coupling/71. 

Comparison of couplings 

The usual nonadiabatic coupling in an N-state system with the only "slow" 
coordinate R is described by the skew-symmetric N x N matrix P whose elements 
have the dimension of length-1 according to Eq. (9). On the other hand, the 
post-adiabatic couplings H, of orders s ~> 1 are Hamiltonian 2N x 2N matrices 

As being an N x N matrix without any special symmetry properties whereas Bs and 
Cs are symmetric N x N matrices. Recall that the upper index t means a transposed 
matrix. What is of great importance for the post-adiabatic approach is that the 
elements of the blocks As, Bs, Cs are of different dimensions: 

length - 1 length - 1 energy- 1/2~ 

Hs --, \ length-  1 energy 1/2 length- 1 j"  

The elements of the N x N blocks of the matrices Ks and Ss for each s ~> 0 are also 
of different dimensions: 

 Ce.er y '  , )  
Ks \ energy energy 1/2 ' 

S~ ~ (enerlgyl/2 energy- x/2). 

To compare Hs (s i> 1) and P, it is necessary to multiply the elements of the blocks 
Bs and Cs of the matrix/Ts by some functions in the adiabatic potentials ul . . . .  , us 
to achieve the dimension of length-1. 
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Noncrossing rule 

The noncrossing rule for the terms of the same symmetry [5] undergoes a marked 
modification when applied to the post-adiabatic potentials. This fact is closely 
connected with the possibility of complex potentials and is explained in detail in the 
next section. 

6 The two-state problem 

As the simplest example, consider the case N = 2 (the two-state problem). The 
importance of this case stems not only from the fact that many characteristics of the 
process with N = 2 states can be calculated analytically, but mainly from the fact 
that the nonadiabatic transitions in a system with any number N of states can 
often be approximately described within the two-state model [5]. For any N, each 
element Pkz = -P~k of the coupling matrix P(R) is, as a rule, of a noticeable 
magnitude only for the values of the "slow" coordinate R ranging in a rather 
narrow interval [e.g., near the avoided crossing point, i.e., the point of the minimal 
splitting of the adiabatic potentials uk(R) and u~(R)]. The other elements of the 
matrix P(R) are small in this interval, in particular, what is most important is that 
the elements Pk,, for m ¢ l and Pz,, for m ¢ k are small. The situation where for 
some value of R all the three pairwise couplings between three states q~k, qh, and q~,, 
are strong occurs rarely. In studies of the nonadiabatic transitions k~l, it is 
therefore often possible to confine oneself to considering two potentials uk(R), u~(R) 
only and the coupling Pk~(R) between them (if the neighboring avoided crossing 
points do not lie too close to the one corresponding to the states ~0k and q~z). Note 
that this conclusion is in fact valid for any number of "slow" coordinates R,. 

Besides that, in some problems involving, at first glance, N >t 3 pairwise 
coupled states, the latter are divided into noninteracting groups of one or two 
states. This is just the situation for the systems O-He, Ne, Ar, Kr, Xe, D2, CH4 
considered in the next section. 

In the dimension N = 2, the matrix P of the nonadiabatic coupling [Eq. (9)] 
takes the form 

:) 
and the full matrix Ko [Eq. (22)], the form 

--a 0 0 
K 0 ~--- 

a + z  0 0 

0 0 . - - ~  - -12  

hp 
a = 2 ~ '  (23) 

where a = ½(ul + U 2 )  - -  g and z = ½(ul - u2) > 0 (recall that ul and u2 denote the 
usual adiabatic potentials). The two-state problem is therefore characterized by 
three energy-dimensional functions o-(R) = ae(R), z(R), and y(R), where 7 = a2 > 0. 
The first-order post-adiabatic potentials corresponding to the total energy E are 

U (1) ~-  O" - -  7 + ( z 2  - -  40.~)) 1/2 + E, u~ i) = (7 - -  7 - -  (,~2 __ 4 0 - 7 ) 1 / 2  + E .  (24) 



Pos t -ad iaba t ic  a p p r o a c h  to a tomic  and  molecu la r  processes  239 

Table 1. T h e  evolu t ion  of the f i rs t-order  pos t -ad iaba t ic  potent ia ls  u]  ~) and  u~ ~) for a , z  fixed and  
y increasing.  No te  tha t  - ~  - "r = E - ux, "r - tr = E - uz ,  z2 /4a  = (u~ - u2)2/8(u1 + u~ - 2E), where  
ut  > u2 are the usua l  ad iaba t ic  potent ials .  An  asterisk in the last  co lumn  means  tha t  the symplect ic  
mat r ix  So c a n n o t  be chosen  to be real a l t hough  u]  1) and  ut2 ~) are real 

Rela t ions  be tween u~, 
u2, and  E; here  

= (ut  - E ) / ( E  - u2) 

T he  y range  Relat ions between u~ ~), u{~ ~, 
and  E 

~z < 0 ,  0 < z < - g ,  0 < ?  < - o - z  u~ u < u] 1) < E 
i.e., u2 < ul  < E - c r - z  < ) , < z - a  u~l) < E < u~xl~ 

~, > ~ - ~ u~" < u~" < E 

t z < 0 ,  z~> - - a ,  0 < 7 < ~ - - a  u t 2 1 ) < E <  "mu 1 

i.e., u2 < E <<. u l ,  ~c < l y > ~ - a ut21) < u]l~ < E 

cr>0, z >2a, 0 <~ < ~ - c r  u ~ <  E <u~ ~ 
i.e., u2 < E < ul ,  1 < ~c < 3 z -  a < 7 < z2/(4a) u~ 1) < u] 1) < E 

y > z2/(4a) u~ 1) and  u~ 1) are complex  

a > O , a  < z < 2 a ,  0 < y < z - a  ut:l) < E  < u ]  1) 

i.e., u2 < E < ul ,  x > 3 z - o- < 7 < z2/(4°') E < ut2 IJ < u] 1) 

m and u(2 ~) are complex  y > z : / ( 4 a )  u 1 

o" > 0, 0 < z ~< a, 0 < y < z2/(4o ") E < u~ 1~ < u] 1~ 
E <~ u2 < ul  3' > z2 / (4a)  u~ x~ and u~, ~ are complex  

I f  a > 0 and  y > z 2 / ( 4 a ) ,  then these potentials  are not real. So, complex post-  
adiabat ic  potent ia ls  do not  occur  for "classically accessible" mot ions  (where 
ul < E, Uz < E, and  therefore a < 0) and are typical for "strongly classically 
forbidden"  regions (ul >> E, u2 >> E) with a considerable coupling. 

Some features of  the evolut ion ofu~ 1) and U(21) for U 1 - -  E, u2 - E fixed (i.e., a, z 
fixed) and the coupl ing p increasing [i.e., the pa ramete r  Y = h 2 p 2 / ( 2 M )  increasing] 
are presented in Table  1 (recall that  we have set u~ > u2). 

The  a lgor i thm of Ref. [1] leads to the following matr ix  So: 

where 

and 

S o  = S'~ = P22  013  

P 32  1933 

\ P 4 1  0 0 P 4 4 /  

P l l  = (u t l  1) - -  Y - -  a + z - -  E ) / D 1 ,  

P 2 3  = - 2 a / D b  

P,*I  = - -  a ( u ~  a) + Y + a - -  z - -  E ) / D 1 ,  

P33  = (u(11) + Y - o" + -c - -  E ) / D 1 ,  

P 2 z  = (u(21) - Y - a - -  z - E ) / D 2 ,  

P 1 4  = 2 a / D 2 ,  

P32  = a(ut2 x) + ~ + a + z - -  E ) / D 2 ,  

P,*4 = (ut2 a) + Y - a - "r - -  E ) / D z  

D1 = {2(z a - 4ay)x/2E(z 2 - 4 a 7 )  i n  + z - 2y]} l/a, 

D2 = - {2(z 2 -- 4ay ) ln [ ( z  2 - 4a?') 1/2 + z + 2y]} 1/2. 
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Recall that a = x/~ = h p / . 2 ~ .  When the matrix So can be chosen to be real, the 
algorithm of Ref. [1] does present a real matrix S~. 

For  So = S* the first-order post-adiabatic coupling takes the form 

//1 = (S~) -1 dS~ y z 
dR t - x  

0 0 y 

The easiest way to calculate the elements x, y, z, and t is as follows. The matrix 
(S~)- 1 (dKo/dR)S~ with Ko the operator [Eq. (23)] is Hamiltonian at each value 
of R. This matrix has therefore the form 

, , 

where A, B, and C are 2 x 2 matrices, B and C being symmetric. If Aij, B~j, and 
C~s are the elements of the matrices A, B, and C, respectively (i, j = 1, 2), then 

Bll B22 Ai2 - A2i (u(x 1) - E)A12 - (u(2 l) - E)A21 
x = - ~ - ,  y =  2 ' z =  u(21 )_u( t l ) ,  t =  u~l )_ul l )  (25) 

Formulas  (25) are a particular case of the so-called symplectic Hel lmann-Feynman 
theorem [1]. These formulas enable one to find the post-adiabatic coupling/72 
without differentiating the operator S~. 

As already mentioned in the previous section, the functions x(R), y(R), z(R), 
and t(R) are of dimensions 

x ,-~ y ,-~ length-  1, z ~ length-  1 energy- 1/2, t ,~ length- i energyl/Z. 

To compare Hi with Ho (i.e., x, y, z, and t with p) it is therefore necessary to correct 
the elements z and t dimensionally. Below, while analyzing the systems O, F, 
C1-He,  Ne, Ar, Kr, Xe, D2, CH4, HC1, HBr, HI, we compare p with the functions 

t 
x, y, ~ = Az, ~ = ~ ,  (26) 

where 

A = E½(ui - Uz)31/2. (27) 

Using the two-state problem as an example, it is easy to explain the post- 
adiabatic analogue of the noncrossing rule for the terms of the same symmetry. Set 
p = const. (so that y = const.) and 

Ul --- ~R 2 + fl + ~, u2 = y - -  ~ R  2 - / ~ ,  

where ~ and fl are some positive constants of dimensions 

~ length-  2 energy, fl ~ energy. 

Then a = 7 - E and ~ = c~R 2 +/?. The first-order post-adiabatic potentials (24) are 

u l , ,  ((i) R) = + [(~R 2 + fl)u + 4(E -- 7)7] i/2. 
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Fig. la -e .  The first-order post-adiabatic potentials u] t) (shown by the solid line) and u~ 1) (shown by the 
dotted fine) in a two-state problem with the adiabatic potentials ul = aR 2 + fl + 7, u2 = 7 - a R2 - fl 
[a, fl, and 7 = h2P2/(2M) being constants]. The potentials u]l.~ for the critical value (472 -/?2)/(47) of 
the total energy E (panel b) are also plotted in panels a and c by the dashed line. The values R_ and R + 
of the coordinate R in panel a are coalescence points 

These  potent ials  are plotted in Fig. 1 for various values of  the total energy E (u(~ 1) 
is s h o w n  by a solid line and u(21) by a dotted one). The quantities R+ in Fig. l a  and 
u+ in Fig. l c  are 

R+ -{- (2[Y(7 - E)]l/2 - fl ) U2 
= , u± = _+[,8 2 + 4(E - 7)7] 1/2. 

The dashed line in Figs. la,  c shows  the potentials  u (1) for the critical value 1,2 
E = (472 - / 32 ) / (47 )  of  the total  energy: 

u]l,)2(R)cri t = -t-RE~2R 2 + 2~fl] 1/2. 

The values R _  and R+ of  the coordinate  R in Fig. l a  are coalescence  points.  
At these points ,  utxl)= u(21), while the potentials  u] 1) and u(21) are complex  for 
R_  < R < R + .  

An ot h er  type of  coa lescence  point  evo lut ion  is observed for a two-state  prob- 
lem with 7 = const ,  and 

Ul ---- 7 -k- ( ~ R  2 q- f l ) - 1 ,  U2 = 7 - ( c~R2 + f l)-1,  

where a and fl are s o m e  posit ive constants  of  d imensions  

,-, length - 2 energy - 1, fl ~ energy-  1. 

Then a = 7 -  E and z = ( ~ R 2 +  f l ) - l .  The first-order post-adiabatic  potentials  
(24) are 

u~l)2(R ) = -t- [ (aR 2 + f l ) -2  + 4(E -- 7)7] 1/2 
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Fig. 2. The first-order post-adiabatic potentials u~ 1) (shown by the solid line) and ut21) (shown by the 
dotted line) in a two-state problem with the adiabatic potentials ul = 7 + (~R  2 +f l ) -~ ,  u2 = 
7 - (ctR 2 + f l ) - i  [ct, fl, and o/= h2p2/(2M) being constants]• The values R_ and R ,  of the coordinate 
R in panel a are coalescence points 

For E~<(4T 2 - f l -2 ) / (47)  these potentials are complex for all R. For  
E > (472 - fl-2)/(47) the potentials u~l)E(R) are plotted in Fig. 2 (u~ 1) is shown by 
a solid line and u(21) by a dotted one). The quantities R+ in Fig. 2a and u~- in 
Figs. 2a, b are 

R+ -}-([47(7--E)]-U2--fl) I/2, 
= u+ = +_ [ f l -2  + 4 ( E -  ?)?]1/2. 

These values R_ and R + of the coordinate R in Fig. 2a are coalescence points. At 
these points, u~ ~) = u(21), while the potentials u~ 1) and u(] ) are complex for R < R_ 
and R > R+. 

It turns out that for any irreducible generic system with any number N of states, 
the singularities of the post-adiabatic potentials u~ s) of any order s >~ 1 are the same 
as in these model examples (irreducibility means that the states cannot be divided 
into several noninteracting groups). Namely, at almost all the values of the energy 
E the potentials U(k ~) and ul s) do not intersect except for coalescence points where 
these potentials possess a square root singularity, see Fig. 3a. At some isolated 
values of E the potentials u~ ~) and ul s) constitute two smooth curves intersecting at 
a nonzero angle, see Fig. 3b. The metamorphoses of these potentials as E passes 
through the critical value look the same as in Figs. la, b, c. 

7 Van der Waals interactions of O, F and CI atoms with closed 
shell systems 

As an application, consider the long-range interaction of 2p and ap atoms with 
a closed shell system, e.g., a IS atom. 
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Fig. 3. Typical singularities of the post-adiabatic potentials. The values R* of the coordinate R are 
coalescence points 

When a 1S particle approaches a 2p particle, the 2p3/2 state of the latter gives 
rise to two molecular terms 

Va/z,o(R), 12 = 1/2, 3/2, 

while the 2P1/2 state gives rise to only one term 

V1/2,1/2 (R), 
R being the internuclear distance [-33]. The radial relative motion of the particles 
induces transitions between the states with the same projection ~ of the electronic 
total angular momentum along the R axis, i.e., the transitions 

13/2, 1/2) ~ ,  [ 1/2, 1/2). 

There is no coupling between the [3/2, 3/2) state and the two states with ~ = 1/2. 
The latter ones (i.e., the [3/2, 1/2) and [1/2, 1/2) states) are coupled, and they 
constitute a two-state problem which is of our interest in the sequel. 

For the interaction of a (pS)(2p) atom (e.g., a halogen atom) with a 1S particle, 
the [3/2, 1/2) state is the ground one [33]. It correlates with the ground 2P3/2 state 
of the (pS)(Zp) atom as R ~ oe. As R ~ 0, when the spin-orbit interaction energy 
V~o becomes small compared with the orbit-axis interaction energy Vel, the states 

13/2, 1/2), 13/2, 3/2), 11/2, 1/2) 

can be identified as 

2 ~ , ~ / 2 ,  2/-/3/2, 2/'/1/2, 

respectively [-33]. Rotations of the molecular axis mix the states with (2 = 1/2 and 
g? = 3/2.  
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When a 1S particle approaches a 3p particle, the 3P 2 state of the latter gives rise 
to three molecular terms 

V2~(R), 

the 3P1 state, to two terms 

vl,(R), 

and the 3P 0 state, to one term 

g2 = O, 1,2, 

s'2 = O, 1, 

Voo(R), 

see Ref. [33]. The radial relative motion of the particles induces transitions between 
the states with the same value of O. The six components of the fine 3PJS structure 
are therefore divided into three noninteracting groups: 

the states with O = 0: [00), [10), [20); 
the states with ~ = 1: [1 1),121); 
the state with O = 2: 122). 

However, actual calculations show [33] that the coupling between the state [10) 
and the states 100), [20) also vanishes. Thus, all the possible transitions between 
the fine structure components which are induced by the radial relative motion of 
the particles are 

IO0) ~ 120), 111) ~ 121). 

The two pairs of states 100),120) and 111), 121) constitute two two-state 
problems which are of our interest in the sequel. 

For the interaction of a (p4)(3p) atom (e.g., an oxygen, sulfur, selenium, or 
tellurium atom) with a ~S particle, the 122) state is the ground one [33]. It 
correlates with the ground 3P2 state of the (p4)(3p) atom as R ~ oe. As R ~ 0, 
the states 

122), 21), 120), I10), [11), [00) 

can be identified as 

respectively. Note a misprint in Fig. 2 of Ref. [-33] concerning this problem: the 
letters Z and/7  on the fourth plot (from the top) in the right column should be 
interchanged. Rotations of the molecular axis mix the states with different values 
of O. 

In the present paper, we neglect the molecular axis rotation effects and treat the 
internuclear distance R as the only "slow" coordinate. This enables one to apply 
the post-adiabatic analysis to the interactions 2P-IS and 3p-ts. 

The adiabatic potentials Vie(R) and the element p(R) of the matrix of non- 
adiabatic coupling between the 13/2, 1/2) and [1/2, 1/2) states have been deter- 
mined for the 17 2P-~S systems F, C1-He, Ne, Ar, Kr, Xe, D2, CH~ (see Ref. [34] 
for F and Ref. [35] for C1) and F-HC1, HBr, HI [36]. The adiabatic potentials 
Via(R), the element po(R) of the matrix of nonadiabatic coupling between the [20) 
and l0 0) states, and the element Pl(R) of the matrix of nonadiabatic coupling 
between the 121) and 111) states have been determined for the seven 3P-iS systems 
O-He, Ne, Ar, Kr, Xe, D2, CH~ [37]. In all the cases, those features of the van der 
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Waals intermolecular interaction were found by analyzing the differential and 
total cross-sections for elastic scattering in crossed molecular beam experiments 
(the D2,CH4, HC1, HBr, and HI molecules were treated as spherically 
symmetric 1S particles). The applications are exemplified by evaluating the trans- 
port cross-sections and therefore collision integrals for the F-Xe and O-He 
systems [38]. o 

For all these systems for 1 ~< R ~< 7 A, we have calculated, by formulas (24)-(25) 
of the previous section, the first-order post-adiabatic potentials and coupling 
matrices corresponding to the total energy E = - 50, 25, and 100 meV. In fact, for 
the F-HC1, HBr, HI interactions, the potentials u~ 1), u(21) and Coupling matrices//1 
corresponding to E = 25 meV were reported in Ref. [1]. The values E = 25 meV 
and E -- 100 meV lie in the experimentally observable range. The reduced mass 
# of the two particles was used for M. The matrix So = S~ was constructed by the 
algorithm of Ref. [1]. The main results of our computations are presented in 
Tables 2-5 referring to the states of the system F-iS with f2 = I/2, those of the 
systems CI-IS with O = 1/2, those of the system O-1S with O = 0, and those of the 
systems O-1S with ~2 = 1. 

In these tables, the following notations are used. For any function f of the 
internuclear distance R, we denote by R I the point where the absolute value If[ of 
this function attains a maximum. 

In the first and second columns of the tables, we point out the distance Rp 
where the absolute value of the element p(R) of the nonadiabatic coupling matrix 
attains a maximum, and the maximal value [p(Rp)[ itself. 

Some characteristics of the functions x, y, i, ? [Eq. (26)] describing the first- 
order post-adiabatic coupling //1 are given in the columns 4-7. In the fourth 
column, we present the distance Rx, y equal to Rx if the maximum of [x(R)[ is 
greater than the maximum of ]y(R)], and to Ry otherwise. The value of the function 
x (or y) itself at R = Rx.y is pointed out in the fifth column. Similarly, in the sixth 
column, we present the distance R~, t equal to R~ if the maximum of ]f(R)l is greater 
than the maximum of [ ~'(R)[, and to R~ otherwise. The value of the function ~ (or f) 
itself at R = R~,r is pointed out in the seventh column. 

The last two columns refer to the differences 61 = ul - @) and 62 = u2 - u~ 1) 
of the adiabatic and first-order post-adiabatic potentials. In the eighth column, we 
give the distance R .  where the function max(161 (R)I, 162(R)1) attains a maximum. 
The difference 61 (R.) or 62 (R.) itself is pointed out in the ninth column (we present 
the difference whose absolute value is larger). This difference should be compared 
with the potential well depth e of the curve u2(R) given in the second column (the 
minimum position Ro for this curve is pointed out in the first column). 

In all the four tables, the systems are ordered according to the potential well 
depth of the ground state (Va/2.1/2 for the F-1S and CI-IS systems and V22 for the 

1 O- S systems): the well depth increases from top to bottom. The minimum position 
Ro and the potential well depth g of the curve VEE(R) for the O-tS systems are 
collected in Table 6. 

Note that for all the three series F-1S, CI-tS, and O-1S, placing the systems 
according to the increase of the potential well depth of the ground state leads to the 
same order of the target molecules: 

He-Ne-D2-Ar-(HC1)-(HBr)-Kr-CH4-(HI)-Xe (28) 

(the molecules whose interaction with the fluorine atom only has been studied are 
put in parentheses). 
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Table 2. Some characteristic features of the first-order post-adiabatiC potentials and couplings for the 
F J S  systems. For the notations, see the text. The quantities Ro and e refer to u2 = V3/2.1/2 

System E R:,,y XoOr y R~.~ ~ or [" R** 61 or 62 
(meV) (A) (A-  i) (A) ( ~ -  1) (A) (meV) 

Rr (A.) IPl (~,- i)  
Ro (A) e (meV) 

F - H e  - 5 0  1.62 y = 0.380 1.73 ? = 5.99 1.56 61 = 12.0 
1.65 0.614 25 1.61 y = 0.362 1.72 ? = 5.82 1.54 61 = 11.2 
3.01 2.20 100 1.61 y = 0.346 1.70 ? = 5.73 1.53 61 = 10.4 

F - N e  - 5 0  2.33 y = 0.0173 2.49 ? = 0.384 2.3i 61 = 0.783 
2.39 0.627 25 2.32 y = 0.0172 2.42 ? = 0.465 2.24 61 = 0.564 
3.02 5.65 I00 2.32 y = 0.0171 2.38 [" = 0.600 2.16 61 = 0.420 

F-D2 - 5 0  2.53 y = 0.0203 2.94 ? =  0.359 2.63 61 = 1.45 
2.62 0.626 25 2.53 y = 0.0198 2.44 ~ = -0 .228  2.50 61 = 0.602 
3.13 6.05 100 2.52 y = 0.0195 2.56 ? = 0.473 2.73 62 = 1.04 

F -Ar  - 5 0  2.73 y = 0.00467 3.13 ? =  0.176 2.81 61 = 0.374 
2.80 0.632 25 2.73 y = 0.00464 2.63 ~ = - 0.117 2.71 61 = 0.147 
3.31 8.67 100 2.73 y = 0.00461 2.77 ? = 0.232 2.91 62 = 0.283 

F-HC1 - 5 0  2.97 y = 0.00271 3.57 ? =  0.107 3.16 61 = 0.234 
3.12 0.538 25 2.97 y = 0.00270 2.92 ~ = - 0.0861 2.90 61 = 0.0698 
3.18 14.0 100 2.97 y = 0.00269 3.00 [" = 0.175 3.22 62 = 0.244 

F - H B r  - 5 0  3.16 y = 0.00169 3.76 ? = 0.0938 3.35 61 = 0.179 
3.29 0.538 25 3.16 y = 0.00169 3.09 $ = - 0.0777 3.37 62 = 0.0518 
3.00 28.7 100 3.16 y = 0.00168 3.19 [" = 0.140 3.38 62 = 0.206 

F - K r  - 5 0  2.99 y = 0.00245 3.49 ? = 0.133 3.15 61 = 0.247 
3.10 0.631 25 2.99 y = 0.00244 2.93 ~ = -- 0.106 3.16 ~52 = 0.0690 
2.84 34.6 100 2.99 y = 0.00243 3.01 [" = 0.178 3.17 62 = 0.280 

F -CH4  - 5 0  2.98 y = 0.00457 3.50 ? = 0.176 3.16 61 = 0.440 
3.11 0.632 25 2.98 y = 0.00454 2.94 ~ = - 0.142 3.18 62 = 0.126 
2.75 36.7 100 2.98 y = 0.00452 3.03 ? = 0.242 3.18 62 = 0.502 

F-H1 --50 3.46 y = 0.000829 4.20 ? = 0.0657 3.72 61 = 0.118 
3.63 0.465 25 3.46 y = 0.000828 3.40 ~ = - 0.0559 3.67 62 = 0.0424 
2.95 78.5 100 3.46 y = 0.000827 3.49 ? = 0.0940 3.72 62 = 0.149 

F-Xe - 5 0  3.13 y = 0.00317 3.58 t '=  0.150 3.27 61 = 0.272 
3.23 0.674 25 3.13 y = 0.00316 3.06 ~ = - 0.117 3.31 62 = 0.0666 
2.30 147 100 3.13 y = 0.00314 3.15 ? = 0.208 3.30 62 = 0.292 

I n  t h e  s e r i e s  O - 1 S ,  t h e  p o t e n t i a l  we l l  d e p t h s  o f  t h e  s t a t e s  1/"2o a n d  V2t 
i n c r e a s e  i n  t h e  s a m e  o r d e r .  T h e  o n l y  e x c e p t i o n  is  t h a t  t h e  p o t e n t i a l  we l l  d e p t h  o f  t h e  

s t a t e  V2o f o r  t h e  s y s t e m  O - C H 4  is  s m a l l e r  t h a n  t h a t  f o r  t h e  s y s t e m  O - K r ,  s e e  

T a b l e  4. 
A s  a n  e x a m p l e ,  F i g s .  4 - 7  s h o w  t h e  c u r v e s  x(R), y ( R ) ,  i f (R) a n d  ~'(R) f o r  t h e  

s y s t e m s  F - C H 4  a n d  C I - H e  a t  E = 25  m e V ,  O - A r  (12 = 0) a t  E = 100  m e V ,  a n d  

O - X e  (12 = 1) a t  E = - - 5 0  m e V .  
I n  e a c h  o f  t h e  t h r e e  s e r i e s  F - 1 S ,  C I - ~ S ,  a n d  O - ~ S ,  t h e  m a x i m u m  p o s i t i o n  R p  o f  

t h e  a b s o l u t e  v a l u e  Ip (R) I  o f  t h e  n o n a d i a b a t i c  c o u p l i n g  m a t r i x  e l e m e n t  i n c r e a s e s  
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Table 3. Some characteristic features of the first-order post-adiabatic potentials and couplings for the 
CI-XS systems. For the notations, see the text. The quantities Ro and ~ refer to u2 = V3/2,1/2 

System E R~,,r x o r  y Ri,~ ~ or ~" R** 61 or 62 
(meV) (A) (A- ~) (A) (~-  1) (A) (meV) 

Rp (~) I PI (~-- 1) 
Ro (A) ~ (meV) 

C1-He - 5 0  1.84 y = 0.0340 1.00 ? = - 1.64 1.77 61 = 3.68 
1.89 0.524 25 1.83 y = 0.0338 1.00 ? = - 1.64 1.76 61 = 3.48 
3.45 2.85 100 1.83 y = 0.0337 1.00 ? = - 1.63 1.74 61 = 3.28 

C1-Ne - 5 0  2.37 y = 0.00303 2.64 ~" = 0.145 2.37 61 = 0.374 
2.45 0.538 25 2.37 y = 0.00303 2.56 ~" = 0.145 2.33 6a = 0.310 
3.49 6.04 100 2.37 y = 0.00303 2.51 ? = 0.159 2.29 61 = 0.255 

CI-D2 - 5 0  2.64 y = 0.00625 3.02 ? =  0.142 2.71 61 = 0.857 
2.74 0.539 25 2.64 y = 0.00623 2.85 ? = 0.121 2.64 6z = 0.604 
3.48 8.31 100 2.64 y = 0.00621 2.75 f = 0.157 2.55 6z = 0.410 

CI-Ar - 5 0  2.85 y = 0.00176 3.12 ? = 0.0982 2.86 6~ = 0.219 
2.92 0.544 25 2.85 y = 0.00176 3.03 ~" = 0.0974 2.81 61 = 0.173 
3.78 14.9 100 2.85 y = 0.00175 2.97 ? = 0.ii1 2.76 6z = 0.135 

C1-Kr - 5 0  3.12 y = 0.000822 3.51 ? = 0.0432 3.19 61 = 0.108 
3.22 0.544 25 3.12 y = 0.000822 3.02 ~ = - 0.0421 3.11 61 = 0.0710 
3.75 22.0 100 3.12 y = 0.000821 3.21 ? = 0.0573 3.00 6z = 0.0448 

CI-CH4 - 5 0  3.21 y = 0.00136 3.13 ~ = - 0.0633 3.34 61 = 0.197 
3.33 0.544 25 3.21 y = 0.00135 3.13 ~? = - 0.0632 3.25 6z = 0.107 
3.44 27.5 100 3.21 y = 0.00135 3.13 ~? = - 0.0632 3.45 62 = 0.120 

CI-Xe - 5 0  3.38 y = 0.000697 3.31 ~? = - 0.0493 3.51 61 = 0.0942 
3.49 0.608 25 3.38 y = 0.000696 3.31 ~ = - 0.0493 3.43 6~ = 0.0481 
3.23 35.4 100 3.38 y = 0.000696 3.31 ~ = - 0.0493 3.59 62 = 0.0637 

r a p i d l y  as  o n e  g o e s  f r o m  H e  to  Xe  in  t h e  o r d e r  s h o w n  by  the  s e q u e n c e  (28), t he  
m a x i m u m  v a l u e  o f  t h e  f u n c t i o n  •p(R)l i tse l f  c h a n g i n g  o n l y  ve ry  s l igh t ly  (for  t h e  
i n t e r a c t i o n s  O - a S ,  t h i s  h o l d s  for  b o t h  t he  t w o - s t a t e  s u b s y s t e m s  w i t h  f2 = 0 a n d  
12 = 1). O n  t h e  o t h e r  h a n d ,  as  o n e  goes  f r o m  1S = H e  to  zS = Xe, t he  m i n i m u m  
l o c a t i o n  ( e q u i l i b r i u m  d i s t a n c e )  o f  t h e  g r o u n d  s t a t e  va r i e s  in  a c o n s i d e r a b l y  s m a l l e r  
r a n g e  (for  t h e  O - I S  s y s t e m s ,  t he  e q u i l i b r i u m  d i s t a n c e  inc reases ,  wh i l e  for  t h e  F -ZS  
a n d  C I - I S  s y s t e m s ,  it c h a n g e s  in  a n  i r r e g u l a r  way).  C o n s e q u e n t l y ,  as o n e  goes  f r o m  
1S = H e  t o  tS = X e  in  t h e  o r d e r  g i v e n  b y  t he  s e q u e n c e  (28), t he  i n t e r a c t i o n  2, 3p_Z S 
is b e c o m i n g  o f  m o r e  a n d  m o r e  p r o m i n e n t  m o l e c u l a r  c h a r a c t e r  [ 33 ]  (it c o r r e s p o n d s  
to  t h e  H u n d  ca se  c for  xS --- H e  a n d  to  t h e  H u n d  case  a for  1S = Xe). 

T h e  b e h a v i o r  o f  t h e  f i r s t - o r d e r  p o s t - a d i a b a t i c  p o t e n t i a l s  u(z z), u(z z) a n d  c o u p l i n g  
m a t r i c e s  l /1  ( to  b e  m o r e  prec i se ,  t h e  f u n c t i o n s  x, y, ~, ~') for  t he  s y s t e m s  in q u e s t i o n  
s u g g e s t s  t h e  f o l l o w i n g  r e m a r k s  (see T a b l e s  2 -5 ) .  

(1) T h e  f u n c t i o n s  x, y, ~, ~" d e s c r i b i n g  t h e  f i r s t - o r d e r  p o s t - a d i a b a t i c  c o u p l i n g / 7 1  
a n d  t h e  d i f f e r ences  6z = u l -  u ]  1), 62 = / - / 2 -  U(21) of  t he  a d i a b a t i c  a n d  f i rs t-  
o r d e r  p o s t - a d i a b a t i c  p o t e n t i a l s  a t t a i n  t h e i r  a b s o l u t e  v a l u e  m a x i m a  n e a r  t h e  m a x -  
i m u m  p o i n t  o f  t h e  u s u a l  n o n a d i a b a t i c  c o u p l i n g  m a t r i x  e l e m e n t  p. T h e  r e a s o n  is 
t h a t  t he  l a r g e r  t h e  n o n a d i a b a t i c  c o u p l i n g  P,  t he  l a r g e r  all  t h e  p o s t - a d i a b a t i c  
c o u p l i n g s  H~. 
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Table 4. Some characteristic features of the first-order post-adiabatic potentials and couplings for the 
O-tS systems corresponding to the states with 12 = 0. For the notations, see the text. The quantities Ro 
and e refer to u2 = V2o 

System E Rx.y XoOr y Re., 3 or ? R.  61 or 62 
(meV) (A) (A- ~) (A) (~,- ~) (A) (meV) 

Rp (~) IPol (A-1) 
Ro (A) e (meV) 

O-He - 5 0  Potentials u] I), u(2 ~) are complex for 2.46 ~< R (,~) ~< 2.70 
2.53 1.26 25 2.47 y = 0.445 2.56 ? = -- 2.11 2.45 61 = 3.79 
3,40 1.62 100 2.43 y = 0.273 2.44 ? = - 3.13 2.59 62 = 8.05 

O-Ne --50 2.58 y = 0.214 2.76 ~" = - 2.90 2.60 61 = 4.60 
2.61 1.13 25 2.55 y = 0.162 2.64 ? = - 1.56 2.50 61 = 1.66 
3.39 3.53 100 2.53 y = 0.135 2.54 ? = - 2.36 2.70 62 = 2.48 

O-D2 --50 2.91 y = 2.02 2.95 ? = - 19.8 2.91 61 = 13.9 
2.88 1.06 25 2.80 y = 0.274 2.88 ? = - 1.61 2.74 61 = 2.50 
3.61 3.61 100 2.76 y = 0.195 2.77 ? = - 2.67 2.95 c52 = 6.36 

O A r  - 5 0  3.05 y = 0.0695 3.32 ? = - 1.35 3.13 61 = 2.33 
3.12 1.08 25 3.04 y = 0.0605 3.10 ? = - 0.690 2.95 6~ = 0.441 
3.71 6.31 100 3.02 y = 0.0543 3.02 ~ = - 1.68 3.18 62 = 2.29 

O-Kr - 5 0  3.27 y = 0.0411 3.59 ? = - 0.947 3.37 61 = 1.60 
3.36 1.03 25 3.26 y = 0.0374 3.31 ? = - 0.514 3.46 62 = 0.407 
3.86 7.31 100 3.25 y = 0.0346 3.25 ? = - 1.41 3.41 62 = 1.87 

O-CH~ - 5 0  3.30 y = 0.0698 3.60 ? = - 1.31 3.40 6t = 2.72 
3.38 1.03 25 3.28 y = 0.0594 3.33 ? = - 0.633 3.47 62 = 0.697 
3.86 7.21 100 3.26 y = 0.0527 3.26 ? = - 1.70 3.43 62 = 3.05 

O-Xe - 5 0  3.51 y = 0.0305 3.87 ? = - 0.773 3.63 61 = 1.32 
3.61 1.00 25 3.51 y = 0.0282 3.54 ? = - 0.451 3.69 62 = 0.455 
4.00 9.25 100 3.50 y = 0.0264 3.49 ? = - 1.32 3.67 62 = 1.78 

(2) T h e  e l e m e n t s  x a n d  y in  al l  t h e  cases  t u r n  o u t  to  be  m u c h  s m a l l e r  t h a n  ~ a n d  
g(as a rule ,  m o r e  t h a n ' a n  o r d e r  o f  m a g n i t u d e ) .  A t  t he  s a m e  t ime,  t he  m a x i m a l  va lues  
o f  t h e  f u n c t i o n s  Ixl and lYl d o  n o t  differ  c o n s i d e r a b l y .  T h e  s a m e  is v a l i d  for  
t he  f u n c t i o n s  [zl a n d  I~'1 as  well,  a l t h o u g h  t he  d i m e n s i o n  c o r r e c t i o n  g i v e n  by  
Eqs .  ( 2 6 ) - ( 2 7 )  is r a t h e r  a r b i t r a r y .  I n  all  t h e  cases,  t he  m a x i m u m  of lyl is l a r g e r  t h a n  

t h a t  o f  I11. 
(3) As  o n e  goes  a l o n g  t he  ser ies  F - 1 S  a n d  CI -1S  f r o m  1S = H e  to  1S = Xe  in t he  

o r d e r  s h o w n  b y  t h e  s e q u e n c e  (28), t he  f i r s t - o r d e r  p o s t - a d i a b a t i c  c o u p l i n g  1-/1 
w e a k e n s  r a p i d l y  a n d  t h e  d i f fe rences  61 a n d  62 d e c r e a s e  rap id ly .  Reca l l  t h a t  t h e  
s t r e n g t h  o f  t h e  u s u a l  n o n a d i a b a t i c  c o u p l i n g  P is a l m o s t  t he  s a m e  for  all  t h e  s y s t e m s  
in  e a c h  series.  S t a r t i n g  f r o m  1S --- Ar ,  t he  d i f fe rences  81 a n d  62 b e c o m e  neg l ig ib le ,  
i.e., t h e  f i r s t - o r d e r  p o s t - a d i a b a t i c  p o t e n t i a l s  b e g i n  a l m o s t  c o i n c i d i n g  w i t h  t h e  
a d i a b a t i c  p o t e n t i a l s .  T h e  s a m e  t r e n d s  in  t h e  b e h a v i o r  of  H1, ~ ,  a n d  62 a r e  p r e s e n t  
for  t h e  O - 1 S  i n t e r a c t i o n s  as  well,  b u t  in  a m u c h  less c l ea r  fo rm.  

(4) F o r  t h e  F - 1 S  a n d  C I - I S  sys t ems ,  t he  f i r s t - o r d e r  p o s t - a d i a b a t i c  p o t e n t i a l s  
a n d  c o u p l i n g  m a t r i c e s  e x h i b i t  a l m o s t  n o  d e p e n d e n c e  o n  t h e  t o t a l  e n e r g y  E, a t  l eas t  
in  t h e  r a n g e  - 5 0  ~<E  ~< 1 0 0 m e V .  F o r  t h e  O - 1 S  sys tems ,  t he  p o t e n t i a l s  u(t 1), 
u(z 1) a n d  m a t r i c e s  Hx s t r o n g l y  d e p e n d  o n  E. 
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Table 5. Some characteristic features of the first-order post-adiabatic potentials and couplings for the 
O-1S systems corresponding to the states with f2 = 1. For the notations, see the text. The quantities Ro 

and e refer to u2 = V21 

System E R~,.r x or y R~ ~ £ o r /  R ,  61 or 62 
(meV) (~) ( ~ -  1) (~j ( ~ -  1) (~) (meV) 

Rv (~) IPl [ (A-  1) 
Ro (A) s (meV) 

O - H e  - 5 0  2,67 y = 0.486 2.78 ? =  - 7.16 2.68 5x = 8.78 
2.64 0.893 25 2.55 y = 0.177 2.62 ? = - 1.23 2.46 61 = 1.15 
3.32 1.85 100 2,52 y = 0.132 2.52 ? = - 2.63 2.71 62 = 5.76 

O - N e  - 5 0  2.66 y = 0.0773 2.98 ? = - 1.32 2.73 61 = 2.00 
2.73 0.806 25 2.64 y = 0.0670 2.71 ~ = - 0.905 2.52 61 = 0.530 
3.33 3.94 100 2,63 y = 0.0600 2.63 ~" = - 1.85 2.82 52 = 1.89 

O-Dz  - 5 0  2.95 y = 0.164 3.25 ~" = - 2.31 3.03 51 = 4.84 
3.00 0.756 25 2.89 y = 0.1 t 1 2.95 ~ = - 1.00 3.14 62 = 1.03 
3.52 4.23 100 2.86 y = 0.0899 2.86 ? = - 2.17 3.08 62 = 4.53 

O - A r  - 5 0  3.15 y = 0.0298 3.56 ? = - 0.793 3.27 51 = 1.14 
3.24 0.775 25 3.13 y = 0.0274 3.18 ? = - 0.520 3.35 52 = 0.400 
3.61 7.25 100 3.12 y = 0.0256 3.13 ~ = - 1.40 3.31 62 = 1.57 

O - K r  - 5 0  3.37 y = 0.0180 3.85 ? = - 0.595 3.52 61 = 0.806 
3.48 0.733 25 3.36 y = 0.0170 3.40 ? = - 0.407 3.58 62 = 0.344 
3.73 8.78 100 3.35 y = 0.0162 3.36 ? = - 1.16 3.56 62 = 1.25 

O-CH4  - 5 0  3.39 y = 0.0297 3.86 ? = - 0.801 3.55 61 = 1.36 
3.50 0.732 25 3.38 y = 0.0270 3.41 ~" = - 0.506 3.59 62 = 0.577 
3.71 8.81 100 3.37 y = 0.0249 3.37 ? = - 1.42 3.58 62 = 2.05 

O-Xe - 5 0  3.62 y = 0.0136 4.13 ? = - 0.513 3.79 61 = 0.682 
3.74 0.718 25 3.61 y = 0.0129 3.63 ? = - 0.370 3.82 62 = 0.351 
3.81 11.6 100 3.60 y = 0.0124 3.61 ? =  - 1.09 3.81 62 = 1.18 

Table 6. The min imum location/~o and the potential well depth g of the ground state V22(R) for the 
O J S  systems 

System O - H e  O - N e  O-D2 O-Ar  O - K r  O-CH~ O-Xe 

/~o (A) 3.11 3.20 3.35 3.45 3.57 3.56 3.69 
g (meV) 2.97 5.43 6.49 10.4 13.1 13.4 17.3 

(5) I n  g e n e r a l ,  t h e  f i r s t - o r d e r  p o s t - a d i a b a t i c  c o u p l i n g  H1 fo r  t h e  F - 1 S  s y s t e m s  is  

stronger t h a n  t h a t  f o r  t h e  C I - I S  s y s t e m s ,  a n d  t h a t  f o r  t h e  O - 1 S  s y s t e m s  ( for  b o t h  

= 0 a n d  ~ = 1) is  much stronger t h a n  t h a t  f o r  F - 1 S .  R e c a l l  a g a i n  t h a t  t h e  s t r e n g t h  

o f  t h e  u s u a l  n o n a d i a b a t i c  c o u p l i n g  P d e p e n d s  s l i g h t l y  n o t  o n l y  o n  t h e  t a r g e t  

m o l e c u l e  1S, b u t  a l s o  o n  t h e  p r o j e c t i l e  a t o m  z, ap .  T h e  s a m e  l a w  t a k e s  p l a c e  f o r  t h e  

d i f f e r e n c e s  51 a n d  62 a s  wel l :  i n  g e n e r a l  t h e y  i n c r e a s e  c o n s i d e r a b l y  a s  o n e  p a s s e s  

f r o m  C1 t o  F a n d  f r o m  F t o  O .  T h e  r e a s o n  is  t h a t  t h e  s t r e n g t h  o f / / 1  is  v e r y  s e n s i t i v e  

t o  t h e  d i f f e r e n c e  u l  - u 2  b e t w e e n  t h e  t w o  a d i a b a t i c  p o t e n t i a l s  o f  t h e  t w o - s t a t e  
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Inferparticle distance 

Fig. 4. The first-order post-adiabatic 
coupling curves for the F-CH4 
interaction at E = 25 meV. The 
fracture point on the curve ? = ?(R) at 
R = 3 A corresponds to sewing 
together two different analytical 
formulas representing the spherical 
component of the interaction [34] 
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Fig. 5. The first-order post-adiabatic 
coupling curves for the C1-He 
interaction at E = 25 meV 
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Fig. 6. The first-order post-adiabatic 
coupling curves (corresponding to the 
states with 12 = 0) for the O-Ar 
interaction at E = 100 meV 

s u b s y s t e m  in  ques t ion:  the  larger this  difference,  the w e a k e r  the c o u p l i n g  1/1. T h e  
difference u l  - u2 is m a i n l y  d e t e r m i n e d  by  the f ine spl i t t ing  of  the energy  levels  o f  
the  project i le  a t o m  (and co inc ides  w i t h  the spl i t t ing at R = oo). T h e  energy  
separa t ion  b e t w e e n  the  f ine s tructure  c o m p o n e n t s  o f  the projecti le  a t o m  is e q u a l  
to E(2p1/2) - E(2p3/2)  --- 109.4 m e V  for chlor ine ,  E(2p1/2) - E(2p3/2) = 5 0 . 1 m e V  
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Fig. 7. The first-order post-adiabatic 
coupling curves (corresponding to the 
states with 12 = 1) for the O-Xe 
interaction at E = - 50 meV 

for fluorine, and E(3Po) - E(3P2) = 28.14meV, E(3p,) - E(3p2) = 19.62meV for 
oxygen [E(2'3pj) denoting the energy of the corresponding term]. 

The ultimate purpose of the post-adiabatic representations is the reduction 
in the coupling between the potentials and, as a consequence, a more effective 
calculation of multichannel processes. The post-adiabatic approach makes there- 
fore sense only for systems F-Ar,  Kr, Xe, CH4, HC1, HBr, HI and C1-Ne, Ar, Kr, 
Xe, D2, c n  4 where the first-order post-adiabatic coupling Ha does turn out to be 
much smaller than the initial nonadiabatic coupling P. On the other hand, one 
should expect that for the interaction of Br and I atoms with rare gas atoms and 
hydrogen, methane, and hydrogen halide molecules, the post-adiabatic scheme 
would lead to a coupling reduction even much more considerable than that for the 
CI-XS systems. 

8 Concluding remarks 

The post-adiabatic representations have never been exploited yet in actual integra- 
tion of multichannel Schr6dinger equations. The main problem here is to work out 
an adequate technique to handle the more complicated structure of the post- 
adiabatic coupling matrices. This problem is interesting to tackle because for 
systems with a large separation between the adiabatic potentials (like CI-~S in our 
examples) the first-order post-adiabatic representation seems to be more natural 
than the usual adiabatic one. 

It would be also of interest to calculate the post-adiabatic potentials u~12 and 
couplings H~ of higher orders s ~> 2 for the systems F - I s  and CI-IS. As we already 
pointed out in Sect. 4, no convergence criteria for the Klar-Fano procedure as 
s ~ oe are known, and one is not aware even of conditions which would guarantee 
the inequalities t/s < t/s_ ~ for each s t> 1 where r/s are some quantities measuring the 
magnitude of the couplings//~. Moreover, even if the convergence does occur, its 
limit may be only approximate, i.e., the limit functions do not necessarily satisfy 
Eq. (15) exactly. If this is the case, there is a remainder of the interaction not taken 
into account. 

Another interesting problem is to calculate the post-adiabatic potentials and 
couplings for systems with more than two states, although the two-state case is 
much more important  for reasons explained at the beginning of Sect. 6. For systems 
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with N/> 3 states, even the simplest form of the coupling matrix//1 (expected to be 
achieved for So = S~) is still unknown, so the post-adiabatic treatment of such 
systems would be intriguing from the theoretical viewpoint. 
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Appendix. The regularity of the post-adiabatic representations at 
the turning points 

What can be dangerous to the post-adiabatic scheme are the turning points 
u~)(R) = E and the coalescence points u~)(R) = ul~)(R), s >/1, where the spectrum 
of the matrix K~_ 1 (R) becomes multiple. At the turning and coalescence points 
of the post-adiabatic potentials of order s, the post-adiabatic coupling 
Fls = S[2t  dSs_ 1~dR of order s and the post-adiabatic potentials Utk v~ and couplings 
/-/v of all the orders v >i s + 1 are a priori not defined. 

The coalescence points occur only for very low energies E (much lower than the 
values of any physical significance) or very strong couplings//~_ 1. These points are 
therefore not of great interest for practical applications. On the other hand, the 
turning points are present just for the values of E typical for the process in question, 
and are among the key objects determining the system dynamics in both the 
classical and quantum mechanical descriptions. If the matrix-valued function 
S = S~-I(R) did lose smoothness at the turning points of the post-adiabatic 
potentials of order s, the perspectives for applications of the post-adiabatic ap- 
proach would be quite restrictive. 

Fortunately, the function S~-I(R)= S*-I(R)  constructed according to the 
algorithm of Ref. [1] keeps its smoothness at the turning points U(kS)(R) ----- E. Hence, 
the post-adiabatic coupling//~ of order s and all the subsequent post-adiabatic 
potentials Utk v~ and couplings//~, v >/s + 1, are well defined at these turning points. 
Since we did not pay adequate attention in Ref. [1] to this fact of fundamental 
importance for post-adiabatic analysis, we dwell upon it now. Note that for the 
systems O, F, CI-IS considered in Sect. 7, we observed no singularities of/11 at the 
turning points of u~ 1~ and u(a 1~. 

Let Ro be a turning point of the post-adiabatic potential u~)(R) corresponding to 
the total energy E, i.e., u(~)(Ro) = E. At R = Ro the matrix 

(where A, B, C are N x N matrices, B and C being symmetric) possesses the zero 
eigenvalue of multiplicity two (we will sometimes drop the index s - 1). If +).1, 
+22, . . . ,  + 2 s  are all the eigenvalues of the matrix Ks-1 then U(k ~) = 22 + E and 

21(Ro) = 0. For a generic turning point Ro the following holds. 
(1) The matrix K~_ I(R) and all the potentials u~)(R) depend smoothly on the 

"slow" coordinate R near Ro. 
(2) The potentials u~)(R),u(2~)(R), ... ,u~)(R) are pairwise distinct at any 

R close to Ro. 
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(3) du(l~)(Ro)/dR # 0 (in fact, this condition is not essential for the smoothness 
of S *  I(R) at Ro). 

(4) The matrix B(R) is not singular at all R close to R0. 
Turning points of more complicated structures for which these assumptions fail 

occur for some isolated values of the total energy E only and are therefore of little 
importance in practical calculations. 

Note that the functions 2~(R) for k # 1 and the function 2~(R) are smooth 
whereas, according to condition (3) above, the function 2~(R)= [u(~)(R)- E]  1/2 
has a root singularity at point R = Ro. 

According to Ref. [13, at all R close to Ro (with the possible exception of the 
turning point R = Ro itself), each of the N x N matrices 

r k  -+ = C + (A t _ ,)~kI)B-I(A -~ ,)okI), k = 1, 2, . . . ,  N, 

is of rank N - 1. Suppose in addition that 
(5) the 0-eigensubspace of each of these matrices Tk ~ does not lie in the kth 

coordinate hyperplane 

{the kth coordinate is equal to zero}. 

Under these assumptions, the algorithm for the choice of the matrix 
S = S~-I (R)  at R # Ro proposed in Ref. [1] consists of the following. Denote the 
0-eigenvector of the matrix Tk ~ whose kth coordinate is equal to 1 by f ~ , , .  
Consider the 2N-dimensional vector 

g• = B- t (++_2kI_  A)fk~,, • 

According to Ref. [1], the vectors g~ are ( +  2k)-eigenvectors of the matrix 

I0) 
Now recall that the skew-scalar product of vectors a = (ab . . . ,  a2N) and b = 
(bl . . . .  , b2s) is defined as 

N 

(a, b) = ~ (azbN+l -- aN+~bl). 
/=1 

Let the skew-scalar product of the vectors g [  and gk- be equal to --22k(k where 
(, # 0 is a certain number. Set 

fk+, + f ~ ,  fk+., -- f ; ,  
1)k ~- 9 y l / 2  ~ Wk = , ~  y l / 2  

~ k  z'"~k~k 

Denote by V and W the N x N matrices with columns vl, v2, . . . ,vN and 
wl, w2 . . . . .  w~, respectively, and define the matrices X, Y, and the desired matrix 
S*-1 in the following way: 

We wish to prove that the matrix-valued function S*-I(R) can be smoothly 
continued into the point R = Ro. In fact, it suffices to verify that the vectors v~ and 
wl depend on R smoothly in a neighborhood of R0. The matrix C + A t B -  1A is 
singular at the point R -- Ro. Impose the additional genericity condition: 
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(6) The N x N matrix C + AtB- IA is of rank N - 1 at R = R0, and its 0-eigen- 
subspace does not  lie in the first coordinate  hyperplane. 

Treat ing 2 e C and R as independent variables, consider the N x N matrix 

C + (A t + 2I)B-t(A - 21). 

For  R close to Ro and )~ close to 0, this matrix possesses the eigenvalue A(R, 2) 
which smooth ly  depends on R, holomorphical ly  depends on 2, and vanishes at 
R = Ro, 2 = 0. No te  that A(R, + 2 t ( R ) ) -  0. Let F(R, 2) be the corresponding 
eigenvector whose first coordinate  is equal to 1. Note  that F(R, + 2 ~ ( R ) ) =  
f~.,(R). The vector F(R, 2) smoothly  depends on R and holomorphical ly  on 2. 

The vector-valued functions 

F(R, )~) + F(R, -3o) = F~(R, 22), 
F(R, 2) - F(R, - )v) ; = F2(R, )2) 

even in 2 are smooth  in their first argument  R and holomorphic  in the second 
one 22 . 

N o w  consider the skew-scalar product  Z(R, )~) of the 2N-dimensional  vectors 

(B_~ F(R,).) F(R, -)~) 
(2I-A)F(R,;~))  and ( _ B _ I ( 2 I + A ) F ( R  ' -2) )"  

The function Z(R, 2) is smooth  in R and holomorphic  in 2. Moreover,  Z(R, 2) is 
odd in 2 and can therefore be represented in the form 

Z(R, 2) = 2Zo(n, 22), 

where the function Zo is smooth  in its first argument  R and holomorphic  in the 
second one 2 2 . Suppose that  

(7) Zo(Ro, O) 4: O. 

This condi t ion is also a nondegeneracy assumption, i.e., it fails only for some 
isolated exceptional values of the total energy E. To verify this, it is sufficient to 
consider the simplest case where C is a diagonal matrix, B = I, and A - 0. In this 
case, Z(R, 2) = - 2 2  and Zo(R, )~) =- -2 .  

N o w  one has 

FI(R, 22(R)) F2(R, o z t,,(R)) 
v~(R) = [ - 2 Z o ( R ,  22(R))] 1/2' w~(R) = [ - 2 Z o ( R ,  )~(R))]  1/2' 

The vector-valued functions vt(R) and wl(R) are smooth  at the point R = Ro 
because the function ).2(R) is smooth.  
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